

Christine Krüger

Sustainable use of excess wind power shares

A multi criteria analysis of different grid- and storage options

7th International Renewable Energy Storage Conference and Exhibition (IRES 2012) November 12 - 14, 2012, bcc Berliner Congress Center, Berlin/Germany World Council for Renewable Energy (WCRE); EUROSOLAR, The European Association for Renewable Energy

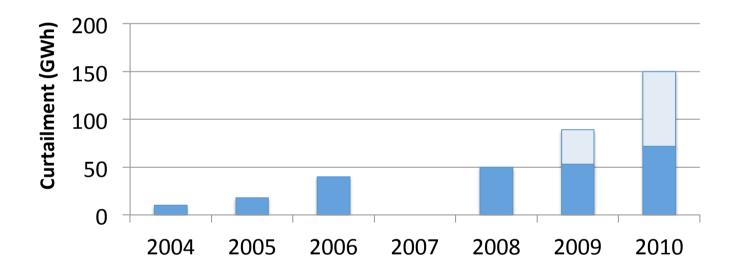
SUSTAINABLE USE OF EXCESS WIND POWER SHARES — A MULTI CRITERIA ANALYSIS OF DIFFERENT GRID- AND STORAGE OPTIONS

Christine Krüger Research Group "Future Energy and Mobility Structures"

Excess wind power shares

Grid restrictions or negative residual loads

Two possible definitions:


- 1) Renewable energy that cannot be used due to grid restrictions
 - → Local problem
 - → Energy must be curtailed
- 2) Renewable feed-in that exceeds electricity demand
 - → Negative residual loads "global" problem

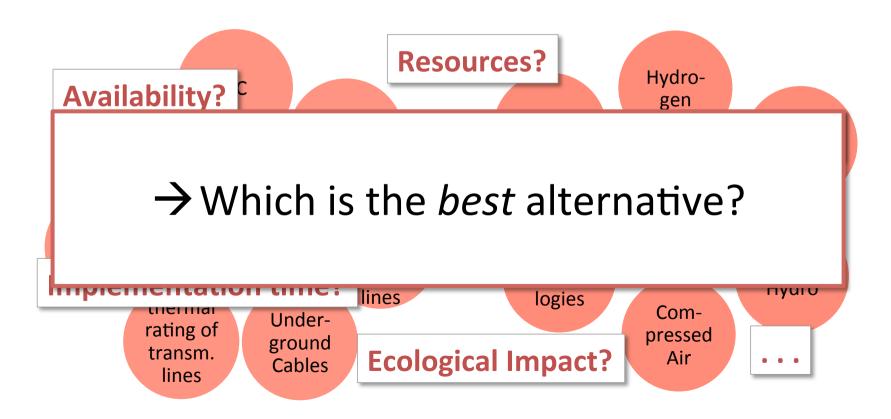
Here: Focus on situation in 2020

12 November 2012 IRES 2012 - C. KRÜGER 2 Wuppertal Institute

Development of surplus energy amounts Rapid increase in curtailed wind energy

- Grid extension cannot keep up with growth in installed renewable capacities
- Curtailment

 Bottlenecks: distribution grid (110 kV), since 2009: also transmission grid (220/380 kV)


Source: J. Bömer (ecofys) "Abschätzung der Bedeutung des Einspeisemanagements nach EEG 2009 - Auswirkungen auf die Windenergieerzeugung in den Jahren 2009 und 2010", Berlin, Oktober 2011

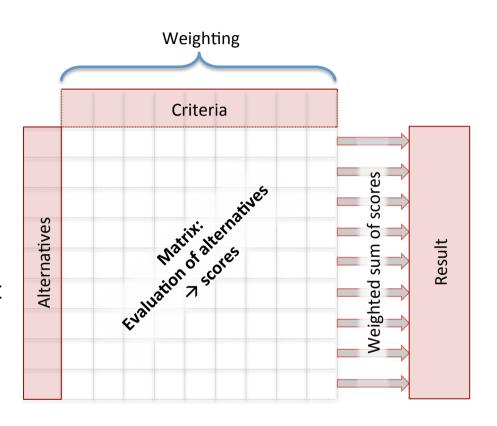
12 November 2012 IRES 2012 - C. KRÜGER 3 Wuppertal Institute

What can be done?

Alternatives to handle surplus energy amounts

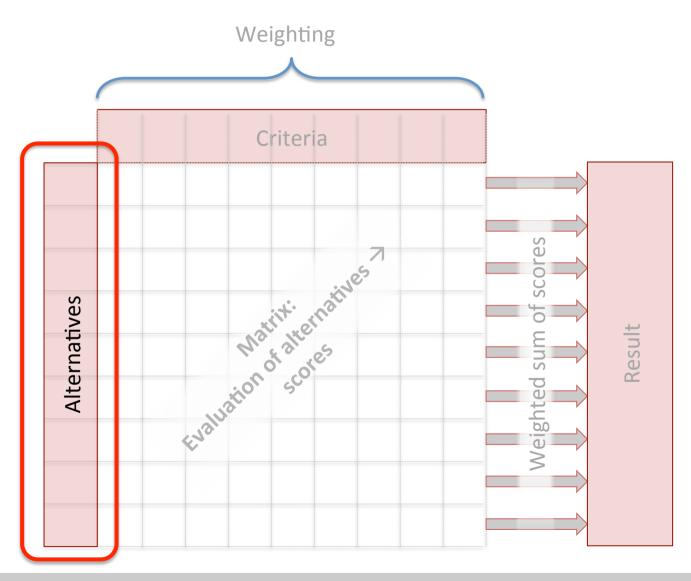
Different options:

12 November 2012 IRES 2012 - C. KRÜGER 4 Wuppertal Institute


Multi Criteria Analysis One method for assessing such problems

- The Multi Criteria Analysis (MCA) is a method to face complex problems where one-dimensional approaches fall short
- In the MCA, the analyst structures the problem, evaluetes the possible solutions and creates a basis for decision-making
- Results of the MCA:
 - Ranking of alternatives
 - Awareness of influences in decision making
 - Consciousness of priorities

12 November 2012 IRES 2012 - C. KRÜGER 5 Wuppertal Institute


Procedure

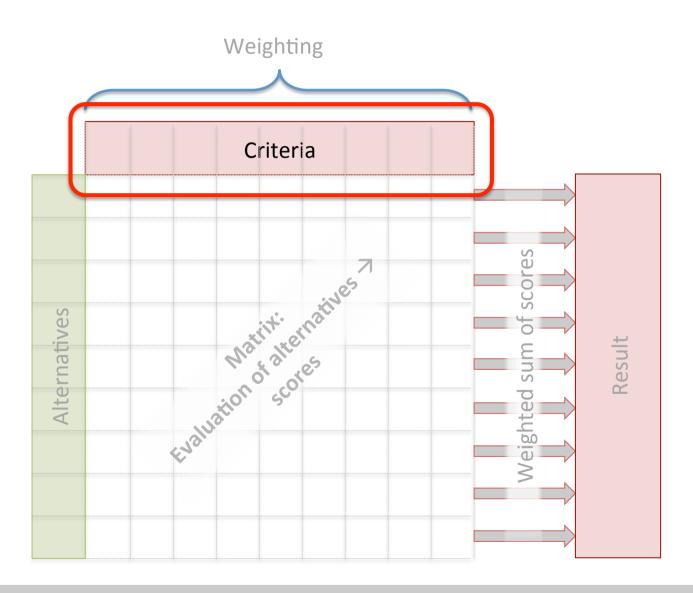
- Four steps:
- Determine alternatives suitable for the problem
- 2. Define **criteria** which fit the alternatives
- 3. **Evaluate** the alternatives against the criteria
- 4. Weighting of the criteria
- The result is the weighted sum of evaluations

12 November 2012 IRES 2012 - C. KRÜGER 6 Wuppertal Institute

1) Determine alternatives suitable for the problem

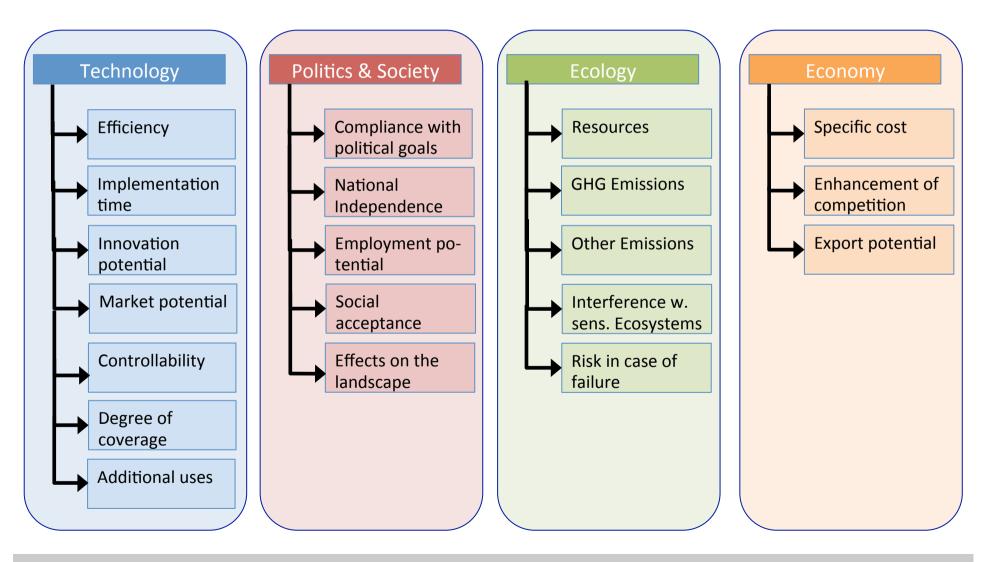
12 November 2012 IRES 2012 - C. KRÜGER 7 Wuppertal Institute

1) Determine alternatives suitable for the problem

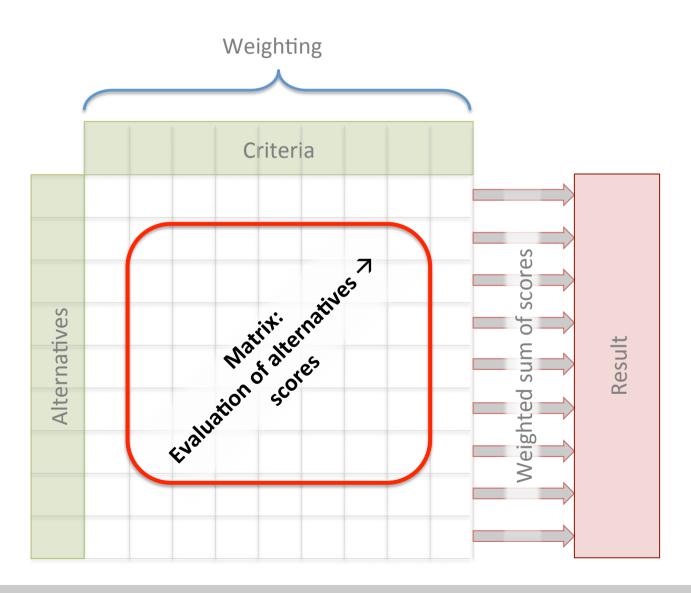

Curtailment	Hydrogen (cavern storage)			
	Hydrogen (gas grid)			
DC overhead lines	Redox-Flow-Batteries			
DC underground cables	NaS-Batteries			
AC overhead lines	CAES (status)			
AC underground cables	CAES (adiabatic)			
Dynamic thermal rating *	Pumped hydro (status)			
High temp. transmission lines	Pumped hydro (new concepts)			

* dt: Freileitungsmonitoring

DC: Direct Current AC: Alternating Current CAES: Compressed Air Energy Storage NaS: Sodium Sulphur


12 November 2012 IRES 2012 - C. KRÜGER 8 Wuppertal Institute

2) Define criteria

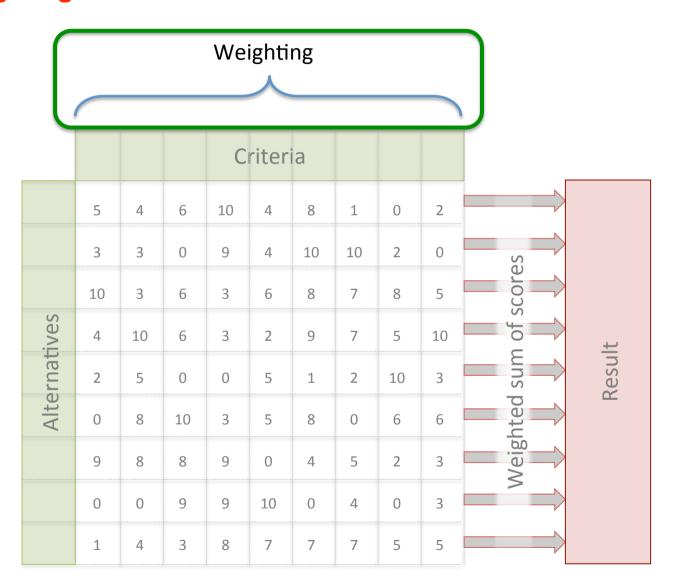

12 November 2012 IRES 2012 - C. KRÜGER 9 Wuppertal Institute

2) Define criteria

12 November 2012 IRES 2012 - C. KRÜGER 10 Wuppertal Institute

3) Evaluate the alternatives against the criteria

12 November 2012 IRES 2012 - C. KRÜGER 11 **Wuppertal Institute**


3) **Evaluate** the alternatives against the criteria

- Evaluate the alternatives
 - Calculations
 - Inquiries
 - Expert interviews
 - ...
- Fit indicators for each criterion
 - "0" for the weakest, "10" for the strongest alternatives
 - linear values for other alternatives
 - "5" if evaluation is not possible

	Criteria								
	5	4	6	10	4	8	1	0	2
	3	3	0	9	4	10	10	2	0
	10	3	6	3	6	8	7	8	5
Alternatives	4	10	6	3	2	9	7	5	10
rna	2	5	0	0	5	1	2	10	3
Alte	0	8	10	3	5	8	0	6	6
	9	8	8	9	0	4	5	2	3
	0	0	9	9	10	0	4	0	3
	1	4	3	8	7	7	7	5	5

12 November 2012 IRES 2012 - C. KRÜGER 12 **Wuppertal Institute**

4) Weighting of the criteria

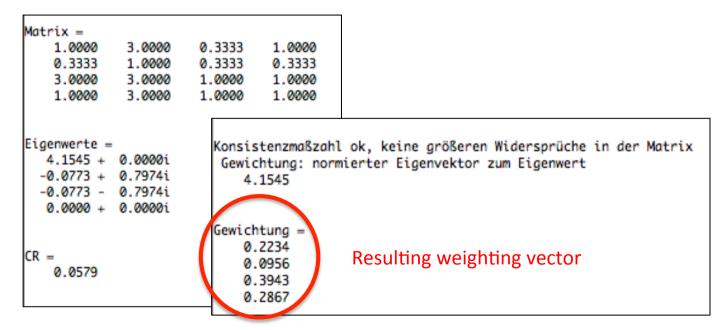
12 November 2012 IRES 2012 - C. KRÜGER 13 **Wuppertal Institute**

4) **Weighting** of the criteria

Many different weighting methods. Examples:

- Equal weights $(w_1 = w_2 = ... = w_n = 1/n)$
- Subjective weighting methods
 - Rank-order weighting $(w_1 \ge w_2 \ge ... \ge w_n, \Sigma w_i = 1)$
 - Analytical Hierarchy Process (AHP)
 - ...
- Objective weighting methods
 - ...

Here: use the AHP


- → Analytical
- → Good documentation of weighting steps
- → Identify inconsistent weightings

12 November 2012 IRES 2012 - C. KRÜGER 14 Wuppertal Institute

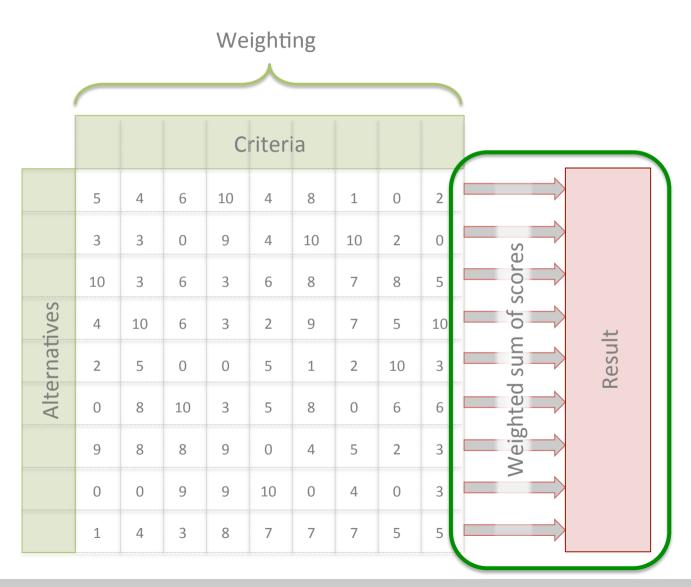
Analytical Hierarchy Process (AHP)


Procedure

- 1. Categorise the criteria in two or more levels
- 2. Pairwise comparison of criteria in each category
 - "How much more important is criterion I in comparison to criterion II?"
 - Scale: 1/9 (much less important) ... 1 (equal) ... 9 (much more important)

12 November 2012 IRES 2012 - C. KRÜGER 15 Wuppertal Institute

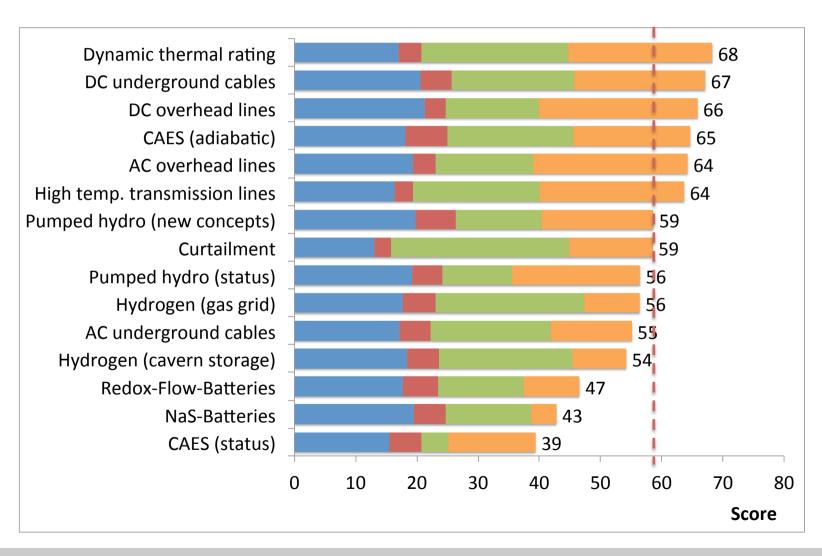
Analytical Hierarchy Process (AHP) Weighting results in this project


Efficiency	22%
Implementation time	5%
Innovation potential	12%
Market potential	29%
Controllability	3%
Degree of coverage	21%
Additional uses	8%
Additional ases	070

Resources	16%
GHG Emissions	56%
Other Emissions	4%
Interference w. Ecosystems	18%
Risk in case of failure	7%

Ecology 29% Politics & Society 9%

Compliance with political goals	4%
National independence	17%
Employment potential	52%
Social acceptance	20%
Effects on the landscape	8%


Applying values and weights Results of the MCA

12 November 2012 IRES 2012 - C. KRÜGER 17 **Wuppertal Institute**

Result of the MCA

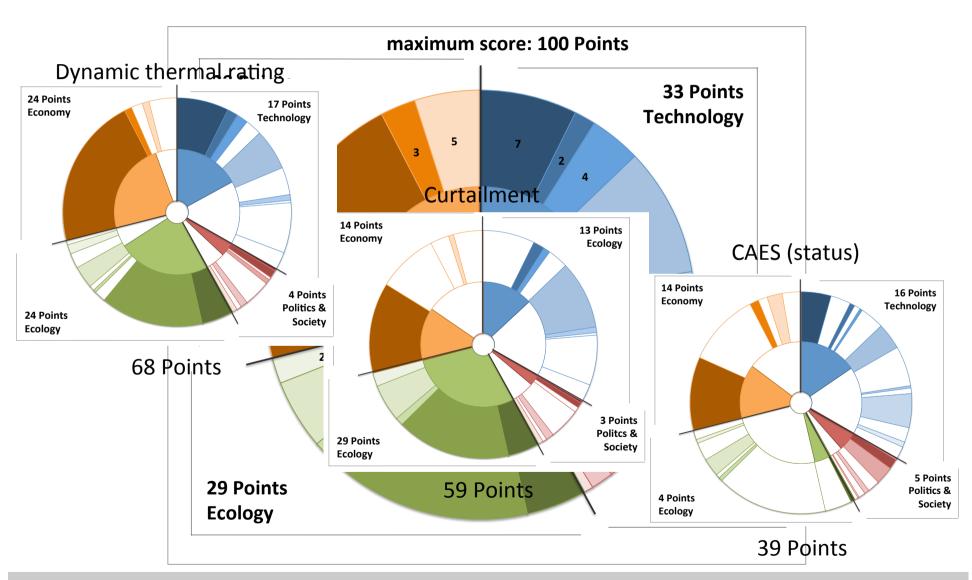
Ranking of technologies for sustainable handling of excess wind power

12 November 2012 IRES 2012 - C. KRÜGER 18 Wuppertal Institute

Further Results

Analyses based on the MCA

The MCA offers many different analysis options:


- Why did a technology "win" the MCA? Why did another score less?
 - e.g. thermal rating vs. curtailment vs. CAES
- What are the advantages of different technologies in different regards?
 - e.g. ecological vs. economical scores
- Is one kind of technologies suited better than another?
 - e.g. grid extension vs. storage
- Are the results robust against changing priorities?

• ...

12 November 2012 IRES 2012 - C. KRÜGER 19 Wuppertal Institute

Analysis of results

Comparison among thermal rating, curtailment and CAES

12 November 2012 IRES 2012 - C. KRÜGER 20 **Wuppertal Institute**

Analysis of results

Robustness of ranking

Are the results robust against changing priorities?

> Apply different weightings

	Basis weights	Equal weights	Eco- logical	highly Eco- logical	Eco- nomical	highly Eco- nomical	Robust ?
Dynamic thermal rating	1	1	2	2	3	3	1
DC underground cables	2	2	5	6	5	5	1
DC overhead lines	3	9	10	10	1	1	X
CAES (adiabatic)	4	4	4	4	6	7	1
AC overhead lines	5	12	9	9	2	2	X
High temp. transm. lines	6	7	7	7	4	4	1
Pumped hydro (new concepts)	7	10	11	11	8	8	1
Curtailment	8	6	1	1	9	9	-
Pumped hydro (status)	9	14	13	14	7	6	-
Hydrogen (gas grid)	10	3	3	3	12	12	X
AC underground cables	11	13	8	8	10	10	1
Hydrogen (cavern storage)	12	11	6	5	13	13	-
Redox-Flow-Batteries	13	5	12	12	14	14	-
NaS-Batteries	14	8	14	13	15	15	-
CAES (status)	15	15	15	15	11	11	-

12 November 2012 IRES 2012 - C. KRÜGER 21 **Wuppertal Institute**

Conclusions

Sustainable use of excess wind energy shares (focus on 2020)

- The process of the MCA helps to structure and assess the reasons behind decision making and leads to a well documented finding
- Dynamic thermal rating systems for overhead transmission lines are considered one of the best options to deal with surplus energy
- DC underground cables, high temperature transmission lines and adiabatic
 CAES are also well suited
- Storage options (except adiabatic CAES) score rather low
 - ➤ Time horizon 2020 results would be different for longer timescale (shift from spatial to temporal challenges new storage technologies will improve technologically and economically)

12 November 2012 IRES 2012 - C. KRÜGER 22 Wuppertal Institute

Thank you for your kind attention!

